
08/10/2001
1

NRL

Hybrid QR Factorization Algorithm for High
Performance Computing Architectures

Peter Vouras

Naval Research Laboratory Radar Division

Professor G.G.L. Meyer

Johns Hopkins University Parallel Computing and
Imaging Laboratory

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 MAY 2003

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Hybrid QR Factorization Algorithm for High Performance Computing
Architectures

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
John Hopkins University Parallel Computing and Imaging Laboratory

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

08/10/2001
2

NRL Outline

n Background

n Problem Statement

n Givens Task

n Householder Task

n Paths Through Dependency Graph

n Parameterized Algorithms

n Parameters Used

n Results

n Conclusion

08/10/2001
3

NRL Background

n In many least squares problems, QR decomposition is employed

l Factor matrix A into unitary matrix Q and upper triangular matrix R such
that A = QR

n Two primary algorithms available to compute QR decomposition

l Givens rotations

u Pre-multiplying rows i-1 and i of a matrix A by a 2x2 Givens rotation matrix will zero the
entry A(i, j)

l Householder reflections

u When a column of A is multiplied by an appropriate Householder reflection, it is possible
to zero all the subdiagonal entries in that column

 −
=

***0

cs

sc

 −=

****2

***0

**** T
T

vv
vv

I

08/10/2001
4

NRL Problem Statement

n Want to minimize the latency incurred when computing the QR
decomposition of a matrix A and maintain performance across
different platforms

n Algorithm consists of parallel Givens task and serial Householder task

n Parallel Givens task

l Allocate blocks of rows to different processors. Each processor uses
Givens rotations to zero all available entries within block such that

u A(i, j) = 0 only if A(i-1, j-1) = 0 and A(i, j-1) = 0

n Serial Householder task

l Once Givens task terminates, all distributed rows are sent to root
processor which utilizes Householder reflections to zero remaining entries

08/10/2001
5

NRL Givens Task

n Each processor uses Givens
rotations to zero entries up to the
topmost row in the assigned group

n Once task is complete, rows are
returned to the root processor

n Givens rotations are accumulated in
a separate matrix before updating
all of the columns in the array

l Avoids updating columns that will
not be use by an immediately
following Givens rotation

l Saves significant fraction of
computational flops

********00

*********0

********00

*********0

*******000

********00

*********0

Processor 0

Processor 1

Processor 2

08/10/2001
6

NRL Householder Task

n Root processor utilizes
Householder reflections to zero
remaining entries in Givens
columns

n By computing a-priori where zeroes
will be after each Givens task is
complete, root processor can
perform a sparse matrix multiply
when performing a Householder
update for additional speed-up

l Householder update is A = A - ßvvTA

n Householder update involves
matrix-vector multiplication and an
outer product update

l Makes extensive use of BLAS
routines

*******000

*******000

*******000

*******000

*******000

*******000

*******000

********00

*********0

Processor 0

08/10/2001
7

NRL Dependency Graph - Path 1

*45434036312518101

**444137322619112

***4238332720123

****39342821134

*****352922145

******3023156

*******24167

********178

*********9

n Algorithm must zero matrix entries
in such an order that previously
zeroed entries are not filled-in

n Implies that A(i, j) can be zeroed
only if A(i-1, j-1) and A(i, j-1) are
already zero

n More than one sequence exists to
zero entries such that above
constraint is satisfied

n Choice of path through dependency
graph greatly affects performance

08/10/2001
8

NRL Dependency Graph - Path 2

n By traversing dependency graph in
zig-zag fashion, cache line reuse is
maximized

l Data from row already in cache is
used to zero several matrix entries
before row is expunged from cache

*453628211510631

**4435272014952

***433426191384

****42332518127

*****4132241711

******40312316

*******393022

********3829

*********37

08/10/2001
9

NRL

n Parameterized Algorithms make
effective use of memory hierarchy

l Improve spatial locality of memory
references by grouping together
data used at the same time

l Improve temporal locality of memory
references by using data retrieved
from cache as many times as
possible before cache is flushed

n Portable performance is primary
objective

Parameterized Algorithms :
Memory Hierarchy

CPU

Registers

First Level Cache

Main Memory

Second Level Cache

Memory Hierarchy of SGI O2000

0 clock cycles

2 - 3 clock cycles

8 - 10 clock cycles

60 - 200 clock cycles

08/10/2001
10

NRL Givens Parameter

n Parameter c controls the number of
columns in Givens task

n Determines how many matrix
entries can be zeroed before rows
are flushed from cache

********00

*********0

********00

*********0

*******000

********00

*********0

c

08/10/2001
11

NRL Householder Parameter

n Parameter h controls the number of
columns zeroed by Householder
reflections at the root processor

n If h is large, the root processor
performs more serial work, avoiding
the communication costs
associated with the Givens task

n However, the other processors sit
idle longer, decreasing the
efficiency of the algorithm

*****00000

*****00000

*****00000

*****00000

*****00000

******0000

*******000

********00

*********0

c h

08/10/2001
12

NRL Work Partition Parameters

n Parameters v and w allow operator
to assign rows to processors such
that the work load is balanced and
processor idle time is minimized

Processor 0

Processor 1

Processor 2

v

w

08/10/2001
13

NRL

Results

08/10/2001
14

NRL

HP Superdome
SPAWAR in San Diego, CA

Server Computer (1)

n 48 550-MHz PA-RISC 8600 CPUs

n 1.5 MB on-chip cache per CPU

n 1 GB RAM / Processor

08/10/2001
15

NRL Server Computer (2)

n 512 R12000 processors running at
400 MHz

n 8 MB on-chip cache

n Up to 2 GB RAM / Processor

SGI O3000
NRL in Washington, D.C.

08/10/2001
16

NRL Embedded Computer

n 8 Motorola 7400 processors with
AltiVec units

n 400 MHz clock

n 64 MB RAM per processor

Mercury
JHU in Baltimore, MD

08/10/2001
17

NRL Effect of c

100 x 100 array
4 processors
p = 12, h = 0

0 10 20 30 40 50 60 70 80 90
10

0

10
1

10
2

10
3

T
im

e
-

m
se

c

c

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
18

NRL

100 x 100 array
4 processors
c = 63, p = 12

Effect of h

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

h

T
im

e
-

m
se

c

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
19

NRL Effect of w

100 x 100 array
4 processors
h = 15, p = 10,
c = 60, v = 15

34 36 38 40 42 44 46 48 50 52
10

0

101

10
2

w

T
im

e
-

m
se

c

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
20

NRL

100 150 200 250 300 350 400 450 500
10

•0

10
•1

10
•2

10
•3

10
•4

10
•5

n = m

T
im

e
-

m
se

c

Performance vs Matrix Size

4 processors

• Mercury
• SGI O3000
• HP Superdome

08/10/2001
21

NRL Scalability

2 3 4 5 6 7
0

2

4

6

8

10

12
T

im
e

-
m

se
c

Number of processors

• Mercury
• SGI O3000
• HP Superdome

500 x 500 array

08/10/2001
22

NRL Comparison to SCALAPACK

n For matrix sizes on the order of 100
by 100, the Hybrid QR algorithm
outperforms the SCALAPACK
library routine PSGEQRF by 16%

n Data distributed in block cyclic
fashion before executing PSGEQRF

7

7.5

8

8.5

9

9.5

PSGEQRF HYBRID

9.4 ms

7.9 ms

• 4 processors
• SGI O3000

08/10/2001
23

NRL Conclusion

n Hybrid QR algorithm using combination of Givens rotations and
Householder reflections is efficient way to compute QR decomposition
for small arrays on the order of 100 x 100

n Algorithm implemented on SGI O3000 and HP Superdome servers as
well as Mercury G4 embedded computer

n Mercury implementation lacked optimized BLAS routines and as a
consequence performance was significantly slower

n Algorithm has applications to signal processing problems such as
adaptive nulling where strict latency targets must be satisfied

